If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15b^2-23b+4=0
a = 15; b = -23; c = +4;
Δ = b2-4ac
Δ = -232-4·15·4
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-17}{2*15}=\frac{6}{30} =1/5 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+17}{2*15}=\frac{40}{30} =1+1/3 $
| 1.5-y/1.4=3.5 | | 6(-8x+4)=12(-4x+2)= | | 84u=64 | | 3,5(-4x-10)=-17,5(4x-14)= | | 10z=100,00 | | 3,5(-4x-10)=-17,5(4x-14 | | 27=46+3x-x | | 45v.V=34 | | 3(4x+8)=20x+10-8x+14 | | 67x+2,683x-68=55(50x+30) | | 6=14u-8u | | -5/6x+10=30 | | r-36=12 | | 14÷91=x÷13 | | -3y-35=-5 | | -1=5/x-3= | | 4^2xx1/16=4^6x+18 | | -7/x-11=42 | | 2000=1.06^x | | 46=-4x-10 | | 3y-13-10=0 | | 19x-37=77 | | −2j+7=−12= | | 3x+x-3=1/3(12x-9) | | y=12.5 | | 3.6=6-x | | 2n-3=46 | | X(4x+5)=2(2x-1)/3 | | 19.8=x+12.7 | | 12x+6=6(2x+ | | 9i=8+5i | | (3^2x)-(9(3^x))+18=0 |